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ABSTRACT 

The so-called condensation problem poses numerical convergence challenges for nonlinear solvers. Herein, a single-cell condensation 

problem setup is used to demonstrate the conditional and restrictive nonlinear convergence of existing schemes, which include the fully 

coupled fully implicit method with standard Newton solver (FIM), the sequential fully implicit method (SEQ) with constant enthalpy 

during the Flow subproblem and constant total density during the Thermal subproblem and the modified sequentially preconditioned FIM 

(MSFIP-FIM). Then a new scheme, the trust-region based adaptive sequential fully implicit scheme (aSEQ), is proposed. aSEQ is 

composed of two parts; a trust-region relaxation based on prevention of crossing of kinks in the residual space for the Flow subproblem 

and adaptivity between constant pressure and constant total density constraint depending on phase conditions during the thermal 

subproblem. Using numerical examples, aSEQ is shown to have significantly superior nonlinear convergence compared to the mentioned 

existing methods in terms of the timestep size for which the convergence can be achieved and a larger convergence radius for a given 

timestep size. Modifications are proposed to generalize aSEQ to multiple cells and a one-dimensional example is used to demonstrate the 

significant computational savings of aSEQ. 

1. INTRODUCTION 

Geothermal energy is an attractive energy asset; It is renewable on a human timescale and has low carbon emissions. It involves the 

extraction of thermal energy from subsurface hot spots by the production of geofluid. Part of the extracted thermal energy is then converted 

into electricity through an electric generator. Because geothermal energy is available at all times of the day, it can act as a base load and 

thus provides a reliable alternative to other intermittent renewable energy sources. The decarbonization of electric grids has led to an 

increased volatility in net load and electricity market prices as variable renewable energy (VRE) sources take an increasing fraction of the 

grid (Denholm et al., 2015). Various mechanisms for flexible dispatch of geothermal energy have been proposed and its economic potential 

have been studied to allow geothermal plants to compete in VRE dominated grids (Aljubran & Horne, 2024; Ricks et al., 2022; Ricks et 

al., 2024). 

In the management and development of geothermal fields, reservoir simulations play a vital role in ensuring sustainable extraction of 

energy from the subsurface rock and help in the forecast and optimization of production (O’Sullivan et al., 2001). A typical simulator for 

a conventional geothermal reservoir solves coupled mass and energy conservation equations describing two-phase (steam and water) flow 

and heat transfer in fractured porous media. The governing equations exhibit mixed parabolic-hyperbolic behavior; fluid flow and heat 

conduction are parabolic whereas the hyperbolic nature comes from the transport of mass and energy. Furthermore, a fluid model is 

embedded into the simulator to accurately describe the thermodynamic phase behavior of the geofluid (Faust & Mercer, 1977). The 

monolithic fully coupled fully implicit (FIM) method is the widely used solution strategy for geothermal simulations (Pruess et al., 1999). 

It constitutes solving the system of governing equations simultaneously. For a given timestep, Newton-Raphson is used to obtain a linear 

system which is solved, and the process is iterated over until convergence up to a tolerance is achieved. FIM, in most cases, benefits from 

unconditional stability and quadratic convergence close to the solution. On the other hand, sequential methods split the overall system of 

equations into smaller subproblems which are solved individually and sequentially in a particular order. If an outer loop is enforced, the 

scheme is termed iterative sequential. Otherwise, the scheme comes under the umbrella of explicit methods. The split of the overall system 

is naturally based on the physics that is being modelled. For instance, Poromechanics problems solved using sequential methods can be 

divided into a flow part and a geomechanics part. Similarly, geothermal systems can be separated into flow and thermal subproblems. The 

separation allows the utilization of specialized preconditioners and linear solvers that target the specific behavior of the individual physics. 

Also, the implementation of coupling existing single-physics, specialized simulators in a sequential framework is straight-forward and 

requires much less code development than using the same simulators in a fully coupled framework. This is especially pertinent to 

companies in the industry where mostly specialized simulators for particular physics already exist and so it is capital and time efficient to 

couple the existing simulators in a sequential setting. Furthermore, sequential methods employ a "divide and conquer" strategy where the 

complex multi-physics problems are deconstructed into smaller systems of single physics described by partial differential equations 

exhibiting a certain behavior. This deconstruction allows deeper understanding of the associated nonlinearities and provides insight into 

devising solution strategies that can capture them.  

The condensation problem also referred to as the "negative compressibility" problem is a real subsurface phenomenon that is most 

pronounced in geothermal systems where cold water at constant pressure is injected into subsurface that exists at saturated conditions. 

Coats and Miller (1980) described the condensation problem using a single cell where the injection of cold water leads to the condensation 

of steam which then leads to a drastic reduction in the fluid's volume. Since the grid blocks are of constant volume, the cell pressure 

decreases resulting in further inflow of cold water and condensation of the steam. The cell pressure continues to decline until all the steam 
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condenses after which the pressure jumps to the injection pressure due to the small positive compressibility of liquid water and the inflow 

ceases. The effective compressibility of a two-phase water-steam system is significantly higher compared to the compressibility of either 

liquid water or steam alone (Grant & Sorey, 1979). Therefore, the phase transition from steam to liquid water results in a significant drop 

in steam phase volume which exceeds the expansion of the fluids. As a result, significant numerical convergence issues arise for the 

nonlinear solver when simulating the condensation problem. 

The condensation problem has been discussed in Pruess et al. (1987) where the authors developed an analytical model for injection of 

cold water into a reservoir saturated with super-heated steam. The model assumed complete instantaneous thermodynamic equilibrium 

locally which entails a sharp front between liquid water and saturated steam. However, when validating their analytical model with 

numerical simulations, they observed a two-phase region separating the saturated vapor region from the cold injected water instead of a 

sharp front in the numerical simulations. They detected cyclic variations in pressure in the two-phase region which they characterized as 

entirely spurious and a result of the finite spatial discretization in the numerical simulations. The same phenomenon was observed in Falta 

et al. (1992) when simulating steam injection for underground water remediation. The pressure oscillations hindered the simulation 

performance. Blocking of backflow of cold water was proposed to prevent pressure oscillations in steam injection to improve nonlinear 

performance (Gudbjerg et al., 2004). However, the proposed method is not applicable to geothermal simulations where cold water is 

injected into the reservoir. 

The fully coupled fully implicit method, FIM, owing to its unconditional stability, has been the go-to method used for the solution of 

nonlinear systems arising from multi-physics, multiphase flow in porous media. However, FIM has been shown to suffer from non-

convergence when used for solving the condensation problem (Moncorgé & Tchelepi, 2018; Wang, 2015; Wong et al., 2018). Coupled 

compressibility, 𝑐𝑐𝑜𝑢𝑝𝑙𝑒𝑑, for the system of mass and energy balances and linear compressibility, 𝑐𝑙𝑖𝑛𝑒𝑎𝑟, arising from the linearization of 

the coupled system using fully coupled, fully implicit discretization were defined in Moncorgé and Tchelepi (2018) where the authors 

attributed the convergence issue of FIM to the signs of 𝑐𝑐𝑜𝑢𝑝𝑙𝑒𝑑 and 𝑐𝑙𝑖𝑛𝑒𝑎𝑟. It was proposed that whenever the two compressibilities share 

the same sign, which happens for very small timestep sizes, FIM is convergent. Wang (2015) argued that the signs of 𝑐𝑐𝑜𝑢𝑝𝑙𝑒𝑑 and 𝑐𝑙𝑖𝑛𝑒𝑎𝑟 

being equal is not a sufficient condition for convergence and proposed a stricter restriction on timestep size based on preventing negative 

pressures from the first Newton iteration. Wong et al. (2018) analyzed the condensation problem in a sequential framework and put 

forward a sequential nonlinear solver that is convergent for larger timestep sizes than FIM. The sequential strategy involved solving the 

Flow subproblem for only two-phase cells followed by FIM applied to the whole domain. The Flow sub-solve served as a preconditioner 

to the FIM method by providing a better initial guess. Recently, a multi-level nonlinear solver based on continuous localization in physics 

was devised for the condensation problem (Wang & Voskov, 2022). The proposed solver operated in hierarchical parameter spaces where 

solution from the coarser level is fed as an initial guess to the next refined space. The methodology utilized the Operator-Based-

Linearization approach to construct the multi-level physics parameterization (Voskov, 2017). The solver was shown to have superior 

nonlinear performance as compared to conventional Newton-Raphson based FIM in terms of fewer Newton iterations and lower CPU 

time. 

In this work, the nonlinear performance of some existing nonlinear solvers and coupling schemes is studied using a single-cell 

condensation problem. Then, a trust-region based sequential solver, aSEQ, is proposed. The solver involves construction of a trust region 

for Flow subproblem based on phase state and application of a pressure relaxation if solution pathway tries to cross the boundaries of the 

trust region. In addition, aSEQ employs adaptivity in Thermal subproblem constraint, constant total density for two-phase state and 

constant pressure for single-phase conditions. aSEQ shows superior nonlinear performance compared to the existing nonlinear solvers for 

the single-cell setup. Next, the extension of the algorithm to multiple cells is discussed. 

2. GOVERNING EQUATIONS 

Non-isothermal, multiphase flow of a single component 𝐻2𝑂 fluid in porous media is described by mass and energy conservation equations 

as given respectively: 

𝜕

𝜕𝑡
(𝜙 ∑ 𝜌𝑗𝑆𝑗

𝑛𝑝

𝑗=1 ) + 𝛻 ∙ (∑ 𝜌𝑗𝒖𝑗
𝑛𝑝

𝑗=1 ) − ∑ 𝜌𝑗�̃�𝑗
𝑛𝑝

𝑗=1 = 0        (1) 

𝜕

𝜕𝑡
((1 − 𝜙)𝜌𝑅𝑈𝑅 + 𝜙 ∑ 𝜌𝑗𝑈𝑗𝑆𝑗

𝑛𝑝

𝑗=1 ) + 𝛻 ∙ (∑ 𝜌𝑗ℎ𝑗𝒖𝑗
𝑛𝑝

𝑗=1 ) + ∇ ∙ (𝑲∇𝑇) − ∑ 𝜌𝑗ℎ𝑗�̃�𝑗
𝑛𝑝

𝑗=1 = 0     (2) 

Here, 𝜙 is the rock's porosity whereas 𝑈𝑅 represents its internal energy. 𝜌𝑗 , 𝑆𝑗, �̃�𝑗, 𝑈𝑗  and ℎ𝑗 denote the density, saturation, source/sink, 

internal energy and enthalpy of phase 𝑗, respectively. The combined thermal conductivity of the fluid and rock is given by 𝑲 and 𝑇 is the 

temperature. 𝑛𝑝 refers to the total number of phases which are steam and liquid water, 𝑗 = {𝑠, 𝑤}. Fluid flow of each phase is modelled 

using the Darcy's law: 

𝒖𝑗 = −𝒌
𝑘𝑟𝑗

𝜇𝑗
(∇𝑝𝑗 + 𝜌𝑗𝑔∇𝑧)           (3) 

where 𝒖𝑗 , 𝑘𝑟𝑗, 𝜇𝑗  and 𝑝𝑗 refer to the Darcy velocity, relative permeability, viscosity, and pressure of phase 𝑗, respectively. 𝑔 denotes the 

gravitational acceleration while depth is given by 𝑧. The thermodynamic phase behavior and fluid properties of the steam-water system 

are simulated using the model given in Faust and Mercer (1977). Molar formulation which involves using pressure and enthalpy as the 

primary variables is chosen as the nonlinear formulation. The choice is partially motivated by the fact that pressure and enthalpy remain 

independent of each other irrespective of the phase of the fluid and so variable switching is not required upon phase transitions. In addition 

to the conservation equations and the fluid model, the saturation constraint is enforced: 
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∑ 𝑆𝑗
𝑛𝑝

𝑗=1 = 1            (4) 

Phase state of the fluid at a given pressure and enthalpy are determined using the saturation phase enthalpies as shown: 

𝐹𝑙𝑢𝑖𝑑 𝑃ℎ𝑎𝑠𝑒 𝑆𝑡𝑎𝑡𝑒 = {
𝑇𝑤𝑜 − 𝑝ℎ𝑎𝑠𝑒, ℎ𝑤(𝑝) ≤ ℎ ≤ ℎ𝑠(𝑝)

𝐿𝑖𝑞𝑢𝑖𝑑 𝑊𝑎𝑡𝑒𝑟, ℎ < ℎ𝑤(𝑝)
       (5) 

Finally, CFL is defined as: 

𝐶𝐹𝐿 =
𝑞𝑖𝑛∆𝑡

𝑉𝑝
            (6) 

where 𝑞𝑖𝑛, ∆𝑡, and 𝑉𝑝 are the total incoming volumetric flow rate, the timestep size and the pore volume of the injection cell, respectively. 

3. SINGLE CELL CONDENSATION PROBLEM 

3.1 Formulations 

The condensation problem, sometimes referred to as the negative compressibility problem, can be appropriately described by injection of 

cold liquid water at constant pressure and enthalpy into a single cell that exists at saturated conditions as shown in Figure 1: 

 

Figure 1: Setup for the single cell condensation problem. 

The following assumptions are made: 

1. Internal energy of the system equals its absolute enthalpy. 

2. Energy contribution from rock is negligible. 

3. Heat flow due to conduction is ignored. 

4. Rock is incompressible. 

5. Gravity and capillarity effects are ignored 

The mass and energy balances for the cells are then given by: 

𝑉𝑝
𝜕𝜌

𝜕𝑡
 = Υ𝑖𝑛𝑗(𝑝𝑖𝑛𝑗 − 𝑝)           (7) 

𝑉𝑝
𝜕(𝜌ℎ)

𝜕𝑡
 = H𝑖𝑛𝑗Υ𝑖𝑛𝑗(𝑝𝑖𝑛𝑗 − 𝑝)          (8) 

 𝜌 = ∑ 𝑆𝑗𝜌𝑗
𝑛𝑝

𝑗=1  where 𝜌 is the total density of the fluid 

 Υ𝑖𝑛𝑗 =
𝑘𝐴

∆𝑥
(

𝜌

𝜇
)

𝑖𝑛𝑗
 

 𝐻𝑖𝑛𝑗 is the enthalpy of the injection fluid 

Initial (𝑝𝑖 = 10 𝑏𝑎𝑟,   ℎ𝑖 = 15732.832
𝑘𝐽

𝑘𝑚𝑜𝑙𝑒
) and boundary (𝑝𝑖𝑛𝑗 = 90 𝑏𝑎𝑟,   𝐻𝑖𝑛𝑗 = 6175.919

𝑘𝐽

𝑘𝑚𝑜𝑙𝑒
) conditions are enforced. At the 

specified initial conditions, 𝑆𝑤(𝑝𝑖 , ℎ𝑖) = 0.1 and 𝑇(𝑝𝑖 , ℎ𝑖) = 455 𝐾, whereas the injected fluid is liquid water at a temperature of 355 𝐾. 

 3.2 Apparent Compressibility, 𝜸 

Using chain rule and 𝜌 = 𝜌(𝑝, ℎ), the system of governing equations can be written as: 

𝑉𝑝 [

𝜕𝜌

𝜕𝑝

𝜕𝜌

𝜕ℎ

ℎ
𝜕𝜌

𝜕𝑝
ℎ

𝜕𝜌

𝜕ℎ
+ 𝜌

] [

𝜕𝑝

𝜕𝑡
𝜕ℎ

𝜕𝑡

]  = [
1

𝐻𝑖𝑛𝑗
] Υ𝑖𝑛𝑗(𝑝𝑖𝑛𝑗 − 𝑝)         (9) 

Using Cramer’s rule, the pressure equation can be derived as done in Wong et al. (2018): 
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𝛾
𝜕𝑝

𝜕𝑡
 = (1 − 𝛽𝐻𝑖𝑛𝑗)

Υ𝑖𝑛𝑗

𝑉𝑝
(𝑝𝑖𝑛𝑗 − 𝑝)          (10) 

where 𝛽 and 𝛾 are defined as the following: 

𝛽 =
𝜕𝜌

𝜕ℎ

ℎ
𝜕𝜌

𝜕ℎ
+𝜌

            (11) 

𝛾 =
𝜕𝜌

𝜕𝑝
− 𝛽

𝜕𝜌

𝜕𝑝
ℎ            (12) 

The absolute value of 𝛽𝐻𝑖𝑛𝑗 for the parameter space of interest is such that |𝛽𝐻𝑖𝑛𝑗| < 1. Thus, the term on the right side of Equation 10 

is positive. Therefore, the direction of the change in pressure with time depends on the sign of 𝛾. 𝛾, termed as apparent compressibility, 

has contrasting signs depending on the phase of the fluid: 

𝛾 = {
𝛾 < 0, ℎ𝑤(𝑝) ≤ ℎ ≤ ℎ𝑠(𝑝)
𝛾 > 0, ℎ < ℎ𝑤(𝑝)

          (13) 

ℎ𝑤(p) and ℎ𝑠(𝑝) are the enthalpy of saturated water and saturated steam respectively at the saturation pressure of 𝑝. So, the coupled 

condensation problem has a negative apparent compressibility, and pressure decreases as cold water is being injected into the cell up until 

all the steam has been condensed. This "anomalous" pressure response to injection is simulated and shown in Figure 2(a) where the 

negative apparent compressibility of water-steam mixture causes the cell pressure to drop from initial pressure of 10 bars until all the 

steam has undergone phase transition into liquid water. Also plotted in Figure 2(a) is the water saturation which increases linearly from 

0.1 to 1. Beyond complete condensation, 𝛾 becomes positive and further injection leads to a sharp increase in pressure (as illustrated in 

Figures 2(a) and 2(b)) until the cell pressure equals the injection pressure of 90 bars and the inflow ceases. Another important observation 

is the proximity of the pressure-enthalpy evolution of the cell, shown in red in the zoomed-in plot in Figure 2(b), to the phase boundary, 

given in magenta colored dashed line. Nonlinear convergence issues, as will be discussed in later sections, are directly related to premature 

condensation. The physical solution, as a function of time, lying so close to the phase boundary contributes directly to the convergence 

issues associated with existing nonlinear solvers. 

 

Figure 2: (a) Plot of pressure (shown in red) and water saturation (shown in dashed green) for the single cell condensation problem 

as a function of time. (b) Pressure and enthalpy of the cell in a Phase diagram. The phase boundary between liquid water 

and two-phase region is shown in magenta colored dashed line. The blue and red dots indicate the solution at 𝒕 = 𝟎 𝒅𝒂𝒚𝒔 

and 𝒕 = 𝟎. 𝟎𝟎𝟑 𝒅𝒂𝒚𝒔 (𝑪𝑭𝑳 = 𝟎. 𝟖𝟗𝟕), respectively. 

3.3 Existing Nonlinear Solution Strategies 

Analyzing nonlinear convergence of existing nonlinear solvers is key to understanding why they exhibit poor convergence and to motivate 

the need to develop a more robust nonlinear solution strategy for the condensation problem. Subject to finite volume discretization in 

space and Backward Euler temporal discretization, we define the linearized mass and energy residuals: 

𝑅𝑀
(𝑛+1,𝑘)

= 𝑉𝑝(𝜌(𝑛+1,𝑘) − 𝜌(𝑛)) − Δ𝑡Υ𝑖𝑛𝑗(𝑝𝑖𝑛𝑗 − 𝑝(𝑛+1,𝑘)) = 0       (14) 

𝑅𝐸
(𝑛+1,𝑘)

= 𝑉𝑝((𝜌ℎ)(𝑛+1,𝑘) − (𝜌ℎ)(𝑛)) − Δ𝑡𝐻𝑖𝑛𝑗Υ𝑖𝑛𝑗(𝑝𝑖𝑛𝑗 − 𝑝(𝑛+1,𝑘)) = 0      (15) 

3.3.1 Fully Coupled, Fully Implicit Scheme 

Herein, FIM refers to the fully coupled, fully implicit scheme that employs standard Newton-Raphson as its nonlinear solver. FIM solves 

the full system of the governing equations, given by Equation 16, for the primary variables, pressure and enthalpy: 

 

(a) 

 

(b) 

 



Waziri and Tchelepi 

 5 

 [

𝜕𝑅𝑀

𝜕𝑝

𝜕𝑅𝑀

𝜕ℎ

𝜕𝑅𝐸

𝜕𝑝

𝜕𝑅𝐸

𝜕ℎ

]

(𝑛+1,𝑘)

[
𝑝(𝑛+1,𝑘+1) − 𝑝(𝑛+1,𝑘)

ℎ(𝑛+1,𝑘+1) − ℎ(𝑛+1,𝑘)
]  = − [

𝑅𝑀

𝑅𝐸
]

(𝑛+1,𝑘)

       (16) 

Here, 𝑛 + 1 and 𝑘 + 1 indicate the current time level and newton iteration, respectively. The process is iterated over until the norm of the 

residual drops below a specified tolerance. To explain the conditional convergence of FIM for the condensation problem, 𝑐𝑐𝑜𝑢𝑝𝑙𝑒𝑑, which 

is the compressibility associated with the coupled system and 𝑐𝑙𝑖𝑛𝑒𝑎𝑟, which is derived from the pressure equation, subject to fully coupled 

fully implicit linearization, were derived in Moncorgé and Tchelepi (2018) : 

𝑐𝑐𝑜𝑢𝑝𝑙𝑒𝑑 =
𝛾

𝜌
            (17) 

𝑐𝑙𝑖𝑛𝑒𝑎𝑟 = 𝑐𝑐𝑜𝑢𝑝𝑙𝑒𝑑 − Δ𝑡
𝜉

𝜌
           (18) 

where 𝜉 = (𝛽𝐻𝑖𝑛𝑗 − 1)
Υ𝑖𝑛𝑗

𝑉𝑝
< 0 for two-phase region. The sign of 𝑐𝑐𝑜𝑢𝑝𝑙𝑒𝑑  equals the sign of 𝛾 which is negative for two-phase state 

whereas the sign of 𝑐𝑙𝑖𝑛𝑒𝑎𝑟 depends on the timestep size. For small Δ𝑡, both 𝑐𝑐𝑜𝑢𝑝𝑙𝑒𝑑 and 𝑐𝑙𝑖𝑛𝑒𝑎𝑟 are negative so the pressure is changed 

in the correct direction. However, for large Δ𝑡, 𝑐𝑙𝑖𝑛𝑒𝑎𝑟 becomes positive and Newton iteration would guide pressure in the wrong direction. 

We can derive a timestep size, Δ𝑡𝑠𝑖𝑔𝑛 𝑐ℎ𝑎𝑛𝑔𝑒, above which the 𝑐𝑙𝑖𝑛𝑒𝑎𝑟 changes sign from negative to positive: 

Δ𝑡𝑠𝑖𝑔𝑛 𝑐ℎ𝑎𝑛𝑔𝑒 ∶=
𝛾

𝜉
            (19) 

It was shown, however, that Δ𝑡 < Δ𝑡𝑠𝑖𝑔𝑛 𝑐ℎ𝑎𝑛𝑔𝑒 is not a sufficient condition for convergence and a stricter criterion, Δ𝑡𝑛𝑒𝑔, was derived 

based on preventing negative pressure from the first newton iteration (Wang, 2015): 

Δ𝑡𝑛𝑒𝑔 ∶=
𝛾

𝜉

𝑝

𝑝𝑖𝑛𝑗
< Δ𝑡𝑠𝑖𝑔𝑛 𝑐ℎ𝑎𝑛𝑔𝑒          (20) 

To understand the effect of timestep size on the residual space and the convergence radius of FIM, we look at the residual contours given 

in Figure 3. From the contour plots, we observe that for timestep sizes when solution is in the two-phase region, sub-figures (a) to (c), the 

radius of convergence of FIM shrinks as the timestep size is increased; seven out of the 17 starting guesses, including using initial state 

as the initial guess, converge for sub-figure (a) whereas none of the initial guesses converge for (c). The other point to note is that using 

an initial guess that is in the single-phase liquid region for a timestep where the solution lies in the two-phase region is a poor choice for 

FIM. An interesting behavior is observed for Δ𝑡 = 2 ∙ 10−3 days (CFL = 0.8928) which is given in sub-figure (d) where neither the initial 

state as starting guess nor initial guesses that lie inside two-phase region converge to the solution. However, all the initial guesses that 

start in single-phase liquid region converge to the solution. So, if the solution lies in the single-phase region, FIM is convergent if we can 

provide a reasonable guess from the single-phase region. 

Next, we approximate (Δ𝑡𝑐𝑜𝑛𝑣)𝐹𝐼𝑀 which is defined as the largest timestep size for which FIM is guaranteed to be convergent, through 

numerical simulations. Each simulation is a single timestep with timestep size starting from 10−6 days (CFL = 5.838*10−4) until 2*10−3 

days (CFL = 0.8928) with increments of 10−6 days. The results are summarized in Figure 4. Pressure from the first Newton iteration and 

the corresponding converged pressure are plotted in sub-figure (a). Sub-figure (b) plots the water saturation. Note that only results for 

timesteps for which FIM is convergent are shown. (Δ𝑡𝑐𝑜𝑛𝑣)𝐹𝐼𝑀 is found to be 6.7*10−5 days (CFL = 0.0413) which is less than Δ𝑡𝑛𝑒𝑔. 

Another key takeaway is that for large timestep sizes when the solution resides in the single-phase region, FIM might be convergent even 

if the pressure and water saturation from the first Newton iteration is unphysical (see sub-figure (a) where 𝑝𝑘=1 is greater than 𝑝𝑖𝑛𝑗 =90 

bars and 𝑐𝑐𝑜𝑢𝑝𝑙𝑒𝑑 and 𝑐𝑙𝑖𝑛𝑒𝑎𝑟 have opposing signs. 

 

Figure 3: Residual space and convergence characteristics of FIM for different timestep sizes and initial guesses. The contours are 

for increasing timestep size from left to right. The phase boundary is shown by solid magenta colored line. Blue and red 

dots show the initial state and converged solution, respectively. Black dashed line connects the initial guess with the 

 

(a) 7/17 converged 

 

 

(b) 3/17 converged 

 

 

(c) 0/17 converged 

 

 

(d) 14/17 converged 

 

 



Waziri and Tchelepi 

 6 

corresponding solution at the final Newton iteration after which either convergence or divergence is declared. Initial 

guesses which are displayed in purple edged dots converge to the solution whereas black edged dots diverge. 

 

Figure 4: Effect of timestep size on nonlinear convergence of FIM. 

3.3.2 Sequential Fully Implicit Scheme 

Sequential Fully Implicit schemes split the overall system into two subproblems, Flow subproblem and Thermal subproblem, 

corresponding to the mass and energy conservation equations, respectively. The subproblems are solved individually and an outer loop is 

used to iterate until the overall system converges. During individual sub-solves, a coupling parameter is fixed. Herein, SEQ refers to a 

sequential fully implicit scheme where the Flow subproblem is solved first at constant enthalpy, followed by the Thermal subproblem 

during which total density is kept constant, and the loop is iterated over until convergence up to some tolerance is achieved. An interesting 

characteristic of the SEQ scheme when applied to the condensation problem is that the first Newton iteration in the Flow subproblem 

always increases the pressure if solution from previous timestep is used as the initial guess: 

𝑝(𝑛+1,𝑣𝐹=1) − 𝑝(𝑛) =
Δ𝑡Υ𝑖𝑛𝑗(𝑝𝑖𝑛𝑗−𝑝(𝑛))

𝑉𝑝
𝜕𝜌

𝜕𝑝
|
(𝑝(𝑛),𝜕ℎ=0)

+Δ𝑡Υ𝑖𝑛𝑗

         (21) 

Figures 5 and 6 summarize the effect of timestep size on the nonlinear convergence of SEQ. There are three interesting observations to be 

made. Firstly, SEQ displays superior nonlinear convergence compared to FIM as SEQ converges for more starting points than FIM 

(compare sub-figures 5(a) and 5(b) to 6(a) and 6(b), respectively) and has larger Δ𝑡𝑐𝑜𝑛𝑣 ((Δ𝑡𝑐𝑜𝑛𝑣)𝑆𝐸𝑄= 2.9*10−4 days > (Δ𝑡𝑐𝑜𝑛𝑣)𝐹𝐼𝑀 = 

6.7*10−5 days). Secondly, the reason behind divergence for all divergent points is pressure becoming negative which is directly related 

to solution path erroneously going into the single-phase region when the converged solution is inside the two-phase region. This behavior 

is evident from sub-figures 5(a) to 5(c) and from sub-figure 6(b) where 𝑆𝑤
𝑘=1 approaches 1 as timestep size approaches (Δ𝑡𝑐𝑜𝑛𝑣)𝑆𝐸𝑄. 

Finally, when the solution is in the single-phase liquid region, see sub-figure 5(d), SEQ suffers from slow convergence further illustrated 

by sub-figures 6(c) and 6(d). Note that 20 sequential iterations is used as maximum sequential iterations and the simulation is terminated 

beyond 20 sequential iterations even though the residual norm was much higher than the desired tolerance which is set as 10−10. 

 

Figure 5: Residual space and convergence characteristics of SEQ for different timestep sizes and initial guesses. The contours are 

for increasing timestep size from left to bottom. The phase boundary is shown by solid magenta colored line. Blue and red 

dots show the initial state and converged solution, respectively. Black dashed line connects the initial guess with the 

corresponding solution at the final Newton/sequential iteration after which either convergence or divergence is declared. 

Initial guesses which are displayed in purple edged dots converge to the solution whereas black edged dots diverge. 

 

(a) 13/17 converged 

 

 

(b) 8/17 converged 

 

 

(c) 0/17 converged 

 

 

(d) 0/17 converged 
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Figure 6: Effect of timestep size on nonlinear convergence of SEQ. 

3.3.3 Preconditioned Fully Coupled Fully Implicit Scheme 

A modified sequential fully implicit preconditioner was developed to improve nonlinear convergence of the FIM scheme for the 

condensation problem (Wong et al., 2018). The preconditioning step involved solving only the Flow subproblem and feeding the solution 

from the Flow subproblem as initial guess to FIM. Herein we would refer to this nonlinear strategy as MSFIP-FIM. The application of the 

preconditioner was adaptive i.e., it was only applied to cells at two-phase conditions. 

MSFIP-FIM is applied to the single cell condensation problem and results are given in Figure 7 and 8. For timestep sizes where the 

solution lies inside the two-phase region, the preconditioning enlarges the convergence radius, as indicated by more starting guesses 

converging to the solution in sub-figures 7(a) and 7(b) as compared to FIM. Also, Δ𝑡𝑐𝑜𝑛𝑣 has also increased as a result of the 

preconditioning i.e., (Δ𝑡𝑐𝑜𝑛𝑣)𝑀𝑆𝐹𝐼𝑃−𝐹𝐼𝑀 = 9.2*10−5 days > (Δ𝑡𝑐𝑜𝑛𝑣)𝐹𝐼𝑀 = 6.7*10−5  days, though the increase is not very significant. 

The main advantage of the preconditioner is that for large timestep sizes where phase transition has already occurred, and the solution is 

in the single-phase liquid region. The Flow subsolve in the preconditioning step takes the solution to the single-phase region where FIM 

is convergent given a reasonable initial guess. Sub-figure 7(d) and Figure 8 corroborates this behavior as MSFIP-FIM is convergent for 

all initial guesses irrespective of the phase status of the initial guess as long as the solution lies in the single-phase liquid region. 

 

Figure 7: Residual space and convergence characteristics of MSFIP-FIM for different timestep sizes and initial guesses. The 

contours are for increasing timestep size from left to right. The phase boundary is shown by solid magenta colored line. 

Blue and red dots show the initial state and converged solution, respectively. Black dashed line connects the initial guess 

with the corresponding solution at the final Newton/sequential iteration after which either convergence or divergence is 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

 

(a) 13/17 converged 

 

(b) 5/17 converged 

 

(c) 0/17 converged 

 

(d) 17/17 converged 
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declared. Initial guesses which are displayed in purple edged dots converge to the solution whereas black edged dots 

diverge. 

 

Figure 8: Effect of timestep size on nonlinear convergence of MSFIP-FIM. 

3.4 Trust-region based, Adaptive Sequential Fully Implicit Scheme 

The existing nonlinear solvers fail to tackle the primary causes of non-convergence for the condensation problem, namely, negative 

pressures or in some rare cases negative enthalpies or negative densities. The underlying factor contributing to the solver pushing the 

solution towards unphysical regions is premature condensation. The early condensation leads to large changes in derivatives of density 

which in turn drive the primary unknowns towards negative values. The trust-region based adaptive sequential fully implicit solver (aSEQ) 

aims at keeping the solution path in a trust region where phase transition is only allowed if it is physical. Residual information at the phase 

boundary is used in guiding the solution path towards the true physical solution. The proposed nonlinear solver aims at overcoming three 

main shortcomings of the existing nonlinear solvers: 

1. Divergence into non-physical region for intermediate timestep sizes where converged solution is in the two-phase region. 

2. Conditional convergence contingent on the choice of the initial guess. 

3. Slow sequential convergence as is the case for SEQ for large timestep sizes. 

3.4.1 Components of aSEQ 

aSEQ comprises of two essential components. Firstly, a correction is applied to the Newton update during the Flow subproblem to keep 

pressure in the trust region. Here, the trust region is defined for a given enthalpy, ℎ, as the pressure interval between 0 and the saturation 

pressure at the given enthalpy, 𝑝𝑠𝑎𝑡(ℎ), if the solution lies on the constant enthalpy line inside the two-phase region. On the other hand, 

if the solution is in the single-phase region, the trust region would then be the pressure interval between 𝑝𝑠𝑎𝑡(ℎ) and injection pressure. 

Figure 9 plots 𝑅𝑀 as a function 𝑝 for a given ℎ and helps visualizes the trust region and the kink in the residual at the phase boundary. 

The solution is of course not known a priori, but the sign of the mass residual at the saturation pressure (𝑅𝑀(𝑝𝑠𝑎𝑡(ℎ), ℎ)) indicates the 

phase state of the solution. To explain how the sign of (𝑅𝑀(𝑝𝑠𝑎𝑡(ℎ), ℎ)) is a marker of the solution’s phase state, we look at the pressure 

update from the Flow Newton loop: 

𝑝(𝑛+1,𝑣𝐹) = 𝑝(𝑛) −
RM(𝑝(𝑛+1,𝑣𝐹),ℎ(∗))

𝑉𝑝
𝜕𝜌

𝜕𝑝
|
(𝑝(𝑛+1,𝑣𝐹),𝜕ℎ=0)

+Δ𝑡Υ𝑖𝑛𝑗

         (22) 

where ℎ(∗)is the enthalpy from previous sequential iteration. The denominator in the rightmost term is always positive. Therefore, the sign 

of mass residual affects whether pressure increases or decreases. A positive 𝑅𝑀 would result would want to decrease the pressure and vice 

versa. From sub-figure 9(a), 𝑅𝑀(𝑝𝑠𝑎𝑡(ℎ(∗), ℎ(∗)) is positive and coincides with the kink in the residual. Solution (shown by green dot) lies 

below the saturation pressure and thus the two-phase region becomes the trust region. Note that updated pressure, if not relaxed, lies at 

the single-phase region (shown by red hollow dot numbered 1) and so the phase transition proposed by the Newton solver is not physical. 

If we take the pressure update without relaxation, the pressure becomes negative in the subsequent Newton iteration and thus erroneous 

phase transition leads to divergence. For the case where converged pressure in the Flow inner loop lies inside the single-phase region, the 

sign 𝑅𝑀 would be negative implying that the trust region for pressure is above the saturation pressure i.e., the single-phase region as given 

in sub-figure 9 (b). Since the pressure update from the Newton solver (shown by red hollow dot numbered 1) also exists in the single-

phase region, the condensation is physical and so no correction needs to be applied to the update. 

 

(a) 

 

 

(b) 
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Figure 9: Trust regions for the Flow subproblem. Pink solid dot is the initial guess whereas the green solid dot is the solution. The 

red dotted line is the Newton pathway without relaxation and blue dotted line shows the trust region relaxation pathway. 

Numbers next to the hollow dots indicate an iteration number. 

Now that the mechanism for trust region selection has been established, the next step is to decide how to correct the update if Newton 

update is outside the trust region. The idea proposed is to simply take the midpoint of the pressure from previous iteration and the saturation 

pressure as shown by blue dotted line in sub-figure 9(a). Other corrections, based on minimizing the residual can be used as well. 

Algorithm 1 gives the trust-region correction of the Flow subproblem. The algorithm also includes relaxation of the pressure update when 

transitioning phase from single-phase liquid to two-phase region. This is added because trust region for the Thermal subproblem is not 

developed and for very restricted cases where the solution is in the two-phase region but very close to the saturation line, constant density 

lines, which are used as constraint for Thermal subproblem in the two-phase region, might intersect the saturation line causing erroneous 

condensation. In that scenario, the Flow trust-region solver would ensure relaxed entry back to the two-phase region in subsequent 

sequential iterations. 

Algorithm 1: Trust Region for the Flow subproblem in a single cell setting 

1: if 𝑅𝑀(𝑝𝑠𝑎𝑡(ℎ𝑣), ℎ𝑣) > 0  &&  𝑝𝑣𝐹 + 𝛿𝑝𝑣𝐹+1 > 𝑝𝑠𝑎𝑡(ℎ𝑣)  &&  𝑆𝑤
𝑣𝐹 < 1 then  

2:  
𝑝𝑣𝐹+1 =

𝑝𝑠𝑎𝑡(ℎ𝑣) + 𝑝 
𝑣𝐹

2
 

3: else if 𝑝𝑣𝐹 + 𝛿𝑝𝑣𝐹+1 < 𝑝𝑠𝑎𝑡(ℎ𝑣)  &&  𝑆𝑤
𝑣𝐹 > 1 then 

4:  𝑝𝑣𝐹+1 = 𝑝𝑠𝑎𝑡(ℎ𝑣) − 𝜖 

5: else   

6:  𝑝𝑣𝐹+1 = 𝑝𝑣𝐹 + 𝛿𝑝𝑣𝐹+1 

7: end if   

 

The other component of aSEQ is the adaptive switching between the coupling term that is kept constant during the Thermal subproblem: 

𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑆𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚 = {
𝑅𝐸(𝑝(𝜕𝜌 = 0), ℎ) = 0, ℎ𝑤(𝑝) ≤ ℎ ≤ ℎ𝑠(𝑝)

𝑅𝐸(𝜕𝑝 = 0, ℎ) = 0, ℎ < ℎ𝑤(𝑝)
      (23) 

The adaptivity is necessary because for Thermal subproblem, constant pressure inside two-phase region and constant density inside single-

phase liquid region has shown to suffer from poor convergence or divergence (also illustrated by red line in sub-figure 6(c)) (Wong, 2018). 

The flow chart given in Figure 10 summarizes the aSEQ algorithm. 

 

(a) converged pressure solution is inside two-phase region 

 

(b) pressure solution is inside single-phase region 
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Figure 10: Flow chart of aSEQ algorithm. F and T refer to Flow and Thermal subproblems, respectively. The dashed boxes enclose 

the two components of aSEQ, namely, the trust-region correction and the adaptivity in thermal constraints depending on 

the phase state. 

3.4.2 Nonlinear Performance of aSEQ 

This section details the nonlinear performance of aSEQ for the single cell condensation problem.  Figure 11 plots the residual space for 

various timestep sizes and initial guesses and we observe that aSEQ not only converges for larger timestep sizes but also has bigger 

convergence radius for a given timestep size as compared to existing nonlinear solvers. We also see that aSEQ is convergent irrespective 

of whether the initial guess is in the single-phase region or two-phase region. For instance, for sub-figures 11(a) to 11(c), the solution 

(shown by red dot) lies in the two-phase region and even when an initial guess that is in single-phase liquid region is used, aSEQ safely 

crosses the phase boundary and converges to the solution. Furthermore, aSEQ, due to the adaptivity in Thermal constraint, avoids the 

problem of slow sequential convergence that SEQ exhibits for large timestep sizes when all the steam has condensed (see subfigure 12 

(c)). Also, irrespective of the timestep size, aSEQ is convergent and exhibits a good convergence rate as illustrated in sub-figure 12 (d) 

 

Figure 11: Residual space and convergence characteristics of aSEQ for different timestep sizes and initial guesses. The contours 

are for increasing timestep size from left to right. The phase boundary is shown by solid magenta colored line. Blue and 

red dots show the initial state and converged solution, respectively. Black dashed line connects the initial guess with the 

corresponding solution at the final Sequential iteration after which either convergence is declared. Initial guesses which 

are displayed in purple edged dots converge to the solution whereas black edged dots diverge. 

 

(a) 17/17 converged 

 

(b) 17/17 converged 

 

(c) 17/17 converged 

 

(d) 17/17 converged 
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Figure 12: Effect of timestep size on nonlinear convergence of aSEQ. 

3.4.3 Refinement Study of aSEQ 

The physics of condensation problem requires that upon complete condensation, the cell pressure must increase instantaneously up to the 

injection pressure. However, as shown in sub-figures 12(a) and 12(b), the converged pressures are below the injection pressure (90 bars) 

for 𝑆𝑤 = 1. To ensure that the difference is due to discretization error, a convergence study is carried out for solution at 𝑡𝑠𝑖𝑚 =2*10−3 

days (CFL = 0.89). At time 𝑡𝑠𝑖𝑚, p =28.75 bar and h = 7.1012*103 
𝑘𝐽

𝑘𝑚𝑜𝑙𝑒
. First, we simulate with Δ𝑡 = 𝑡𝑠𝑖𝑚 and then we cut the timestep 

size in half and simulate for two timesteps to get p and h at 𝑡. The process is repeated, and relative error is computed as: 

𝜖 =
𝑌−𝑌𝑟𝑒𝑓

𝑌𝑟𝑒𝑓
,   𝑌 = {𝑝, ℎ}           (24) 

Note that the reference solution at the simulation time is computed using a very small timestep size and FIM as the nonlinear solver. 

Figure 13 plots the relative error as a function of timestep size. We observe that as the timestep size is decreased, the relative error 

decreases as well and the aSEQ solution approaches the reference solution. 

 

Figure 13: aSEQ refinement study. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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4. EXTENSION OF ASEQ TO MULTIPLE CELLS 

The previous section proposed aSEQ, a trust-region based sequential solver, for a single-cell condensation problem setup. This section 

deals with the extension of the algorithm to the condensation problem to multiple cells. The trust-region component of the algorithm is 

modified to enable the scaling; for a single cell, the sign of the mass residual at the phase boundary exactly determines the phase of the 

converged solution. However, for multiple cells, in addition to the sign of mass residual, flux derivatives and pressure increments of the 

neighboring cells also control the direction of pressure change:   

𝛿𝑝𝑖 =
−𝑅𝑀𝑖

−∑
𝜕𝑅𝑀𝑖

𝜕𝑝𝑙
𝛿𝑝𝑙𝑙={𝑛𝑖}

𝜕𝑅𝑀𝑖
𝜕𝑝𝑖

           (25) 

Here, {𝑛𝑖} is the set of neighboring cells of cell 𝑖 and the sign of the summation term in the numerator is not necessarily an indicator of 

the phase of cell 𝑖 if 𝑅𝑀𝑖
 were to be evaluated at the saturation pressure given the fixed enthalpy of cell. Nevertheless, we still know that 

the most significant kinks in the residual space still exist at the phase boundaries and thus, the trust region boundaries can be set a priori 

for a sequential iteration. This is because the discontinuities in the properties of 𝐻2𝑂 across phase boundaries result in kinks in the residual 

space that are much more severe than kinks due to flow direction changes at cell interfaces. The pressure relaxation is applied whenever 

trust region boundaries are crossed irrespective of the phase of the converged solution (which cannot be known a priori). The modified 

trust-region relaxation algorithm for the Flow subproblem is given in Algorithm 2.  

Algorithm 2: Trust Region for the Flow subproblem 

1: if 𝑝𝑣𝐹 + 𝛿𝑝𝑣𝐹+1 > 𝑝𝑠𝑎𝑡(ℎ𝑣)  &&  𝑆𝑤
𝑣𝐹 < 1 then  

2:  𝑝𝑣𝐹+1 = 𝑝𝑠𝑎𝑡(ℎ𝑣) + 𝜖 

3: else if 𝑝𝑣𝐹 + 𝛿𝑝𝑣𝐹+1 < 𝑝𝑠𝑎𝑡(ℎ𝑣)  &&  𝑆𝑤
𝑣𝐹 > 1 then 

4:  𝑝𝑣𝐹+1 = 𝑝𝑠𝑎𝑡(ℎ𝑣) − 𝜖 

5: else if 𝑝𝑣𝐹 + 𝛿𝑝𝑣𝐹+1 < 0  &&  𝑆𝑤
𝑣𝐹 < 1 then 

6:  𝑝𝑣𝐹+1 = 𝑝𝑠𝑎𝑡(ℎ𝑣) − 𝜖 

7: else   

8:  𝑝𝑣𝐹+1 = 𝑝𝑣𝐹 + 𝛿𝑝𝑣𝐹+1 

9: end if   

 

The adaptivity in Thermal constraint is general and thus applicable when scaling from a single cell to multiple cells. Hence, the same 

criterion as given in Equation 23 is used. Additionally, a physical check is added during Thermal loop that prevents enthalpy from 

becoming negative: 

ℎ
𝑣𝑇+1 = {

ℎ
𝑣𝑇

2
, ℎ𝑣𝑇 + 𝛿ℎ𝑣𝑇+1 < 0

ℎ
𝑣𝑇 + 𝛿ℎ𝑣𝑇+1, 𝑒𝑙𝑠𝑒

         (26) 

4.1 1D Numerical Example 

To test the performance of aSEQ for multiple cells’ scenario, a one-dimensional condensation problem is set up, as given in Figure 14. 

The total number of cells is fixed at 50. Each cell has a pore volume of 40 𝑚3 with homogeneous geometric transmissibility of 5000 
𝑐𝑃∙𝑚3

𝑑𝑎𝑦∙𝑏𝑎𝑟
 between cells. Uniform initial conditions (𝑝𝑖 = 10 𝑏𝑎𝑟,   ℎ𝑖 = 15732.832

𝑘𝐽

𝑘𝑚𝑜𝑙𝑒
,  𝑆𝑤𝑖

= 0.1) and linear relative permeabilities 

are used. Cold water at 90 bars and 6175.919 
𝑘𝐽

𝑘𝑚𝑜𝑙𝑒
 is injected into the leftmost cell. Initial timestep size is set at 10−7 days and the size 

of the timestep size is doubled upon success and halved upon failure until the total simulation time of 10−2 days. Tolerance for normalized 

residual norm is fixed as 10−5 for both inner loops and the sequential loop. A maximum of 20 iterations are allowed for inner loops and 

200 iterations for sequential / newton loop (in case of FIM). Since the size of the system is small, direct linear solver is used.  
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Figure 14: Setup for 1D condensation problem. 

Three different nonlinear solution strategies are tested, namely, FIM, MSFIP-FIM, and aSEQ. Pressure, enthalpy and saturation fields at 

the end of simulation time are plotted in Figure 15. Table 1 summarizes the nonlinear performance of the three solvers. Since FIM and 

MSFIP-FIM have a similar timestep profile, the pressure, saturation and enthalpy fields match closely for the two compared to aSEQ. 

Nevertheless, there is a close match in the results. However, aSEQ outperforms both FIM and MSFIP-FIM in terms of computation cost 

since FIM and MSFIP-FIM require around two and a half times longer to complete the simulation. aSEQ takes only 22 timesteps and has 

just 5 timestep cuts. In contrast, FIM must perform 324 timesteps and cut 311 timesteps with similar numbers for MSFIP-FIM. Thus, 

aSEQ can take larger timestep size and save significant computational cost. Note that the overhead associated with computing saturation 

pressure for each cell per sequential iteration as required by the trust-region part of aSEQ is included in its runtime.   

 

Figure 15: (a) Pressure, (b) Water saturation and (c) Enthalpy at the end of simulation time.  

Table 1: Nonlinear performance of FIM, MSFIP-FIM and aSEQ for 1D condensation problem. 

Solver FIM MSFIP-FIM aSEQ 

Normalized Runtime 2.50 2.76 1.00 

Timesteps 324 314 22 

Timestep Cuts 311 301 5 

Sequential/Newton Iterations 17320 18039 2372 

Maximum CFL 0.55 0.51 2.97 

 

5. CONCLUSION 

The Condensation problem poses a great challenge to nonlinear solvers. To motivate the development of robust solvers, existing nonlinear 

solution methods are studied using a single-cell setup of the condensation problem. The tested schemes include the fully coupled, fully 

implicit method with conventional Newton solver, FIM, the sequential fully implicit method, SEQ, and preconditioned FIM as proposed 

in Wong et al. (2018). All the tested schemes are shown to suffer from conditional and restrictive convergence, dependent on the choice 

of the timestep size. Then, a trust-region based nonlinear sequential strategy, aSEQ, is proposed. Severe kinks in the residual space are 

identified at the phase boundaries and a trust region is constructed accordingly for the Flow subproblem of aSEQ. During the Thermal 

sub-solve of aSEQ, adaptivity in the thermal constraint is employed at the Newton level. Extension of the algorithm to multiple cells is 

proposed. Using numerical examples, aSEQ is shown to have significantly improved nonlinear performance compared to the other solvers. 

 

 

(a) 

 

(b) 

 

(c) 
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